3894

the contributions of second order by a factor of
0.1 V(_é)l max/ Er, where Ep is the Fermi energy.
This factor is less than 0. 01,

It should be noted that in the sums in Egs. (19)
the terms corresponding to the first two or three
nearest-neighbor reciprocal-lattice vectors domi-
nate. As it turns out, the contribution of the near-
est-neighbor reciprocal-lattice vector comes in with
a sign opposite to that of the next two nearest neigh-
bors due to the factor sin(2G-7). Also, for each
metal the magnitude of the nearest-neighbor re-
ciprocal-lattice vector is close to the value of ¢ at
which W(q) has its first zero. As a result, com-
paratively small changes in the bare-ion model po-

L. R. SWANSON AND A. A. MARADUDIN 2

tential can significantly affect the contributions to
P and @, even to the extent of changing the signs of
these contributions, decreasing thereby the value
of |P+ iQ

The principal source of error in the present calcu-
lations is probably to be found in the choice of a
bare-ion model potential. It is possible that a dif-
ferent choice from that made here could lead to an
improvement in the agreement between theory and
experiment. Nevertheless, it is still gratifying that
the simple calculation described here is capable of
yielding values of the Raman tensors of Be, Mg, and
Zn which are in order-of-magnitude agreement with
such experimental values as exist.
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Effect of Weak Surface Autocorrelation on the Size Effect in Electrical Conduction

Stephen B, Soffer*
Depavtment of Physics, Polytechnic Institute of Brooklyn, Bvooklyn, New York 11201
(Received 15 April 1970)

Correlation between points on a conductor surface may be important in explaining the rela-
tively large specularity parameters attributed to measurements in single-crystal samples. An
expression for the size effect in the electrical conductivity is obtained that takes into account

the effect of weak surface autocorrelation.

The expression shows that, as expected, the correla-

tion increases the electrical conductivity. It also shows that even an angle-dependent specularity

parameter may not be an adequate description in the sense of the Fuchs model.

Numerical esti-

mates are given for the size effects due to surface roughness and autocorrelation. These are ex-
plained in terms of the competing effects of flux conservation and surface asperity slopes.

Most descriptions of the effect of surface scat-
tering of conduction electrons have employed the
constant specularity parameter p as introduced by
Fuchs.! It has generally been recognized that a
constant p is not likely to provide a realistic de-
scription of this process, except under simplifying
conditions. 2 If the surface scattering is due to
random surface chargés, the specularity param-
eter may depend on the angle of incidence of the
electron’s wave vector and the surface and may

also differ from the magnitude expected on the
basis of the reflection coefficient.® Surface rough-
ness also is expected to produce an angle-dependent
specularity parameter.* In addition, the degree

of correlation between the heights of various points
on the surface should have an effect on the detailed
nature of the portion of the scattered flux usually
described as “diffuse.” With increasing autocor-
relation of the surface heights, the “diffuse” flux
should have a narrower distribution about the spec-
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ular beam. This leads to a finite, increasing con-
tribution of this flux to the current, as correlation
increases. Because of this, the effect of surface-
height variation in increasing the electrical resis-
tivity should be diminished.

Recently methods for observing the effect of
angular dependence of p have been proposed. °~7
It seems appropriate to consider the effect of finite
correlation at this point. This might be important
in explaining observations of apparently nondiffuse
scattering in metals, especially in single crystals,
even though the deBroglie wavelengths of electrons
at the Fermi surface are of the order of inter-
atomic spacings.® It is hard to believe that the
surface height will not vary by more than atomic
dimensions, even in a single crystal. However,
it seems likely that, on single-crystal or even
polycrystalline or abraded crystalline sample sur-
faces, there may be sufficient short-range, or
even long-range, order for correlation to be an
important factor. (An experimental test of this
might be the use of an amorphous surface. )

The purpose of this paper is to give estimates
of the effect of surface autocorrelation on the
electrical conductivity size effect and to consider
the question of the existence of an angle-dependent
p in the presence of correlation.

The basic theory has been given in Ref. 4. The
solution of the boundary-value problem involves
solving a Fredholm integral equation and appears
to be quite difficult in the general case. However,
in the presence of weak correlation, L <), where
L is the correlation length and X the deBroglie
wavelength, the problem is not as formidable.
This case is considered here.

We summarize the boundary condition for a sam-
ple filling all space between planes at z=0 and
z=1, for the surface at z=0. The distribution
function deviates from the Fermi distribution f,
by fi (¥, z) where the +(~) sign is for electrons
leaving (approaching) the surface. The boundary
condition is

F1(¥, 0)= [ dQoP(Q, Q) fi(¥,, 0), (1a)
FiF, 2)=FAD[1+ 8* (e, (1v)
fi'(V)=eElyjz—£°, (1c)

where the integration is over 27 <6y <m, allowed
angles of incidence with the inward-pointing sur-

]
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face normal, u=cosf, ! is the bulk mean free path,
and the electric field E in the —x direction is
parallel to the surface. f },( V) is the bulk deviation
from f;,. The transition probability between inci-
dent angles Q4(8,, @,) and emerging angles (6, ¢),
0<6 < 3w is given by

P(Qq, Q) = [(R20)]76(a)5(8) + [1 = ps(6p)]

xc(Qg, 2)/¢(Q), (2a)
(@ )= (LY/ame ot 3 (D
n=1 .

x e L2m) (a2 (2b)
c(Qo) = [ dc(Q0, Q) (2¢)
(@9 = [ ds(a)6(8), (2d)

(@D = (2mh/2)?, (2e)
Ds (90) = 3-4(¢2)ug ’ (21)

where
a=(21/1) (sinf, cos g, — sinf cosgy) , (3a)
B=(27/)) (sinf,sing, — sind sing) , (3b)
¥ =086 — C0S04=u — g (3c)

Here £ is the rms surface-height variation and L
is the correlation length from the normal distri-
butions assumed for the height distribution and
autocorrelation functions in Ref. 4. For like sur-
faces, we have

& (Vo) =d*(Vp)e™ 0, (4)
where K=#/I. Substitution of Eq. (1b) into (1a)
using (4) gives a Fredholm equation for &*(Q):

3*(Q)=F(Q)+T [ duK(Ry, 2)d*(Q). (5)

Writing all quantities in the form @=Q'” + @2,
where Q‘” is evaluated in the absence of correla-
tion and @‘*’is the lowest-order correction caused
by correlation, upon subtracting the zero-order
solution %9 (Q), we get to lowest order

Q) =F'B(Q)+T J(so>:/a) aQ,
X[ (€, )8 () + K (R, 232 (Q0)] .

L . ®)
Explicitly, we find

FO>Q)= = [1 = p(0))/[1 = ps(8)e ¥ +{ FURQ)[1 = py(6)e K/*]}

X agerer A0S UQL = 5 (69 1R(R0, 2,

(7a)

FO@)={FURL - ps 0)e 1} Jigpurer 4207 URL = 5, (O) IRV (2, 9), (7b) -
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FK(D) (QO’

TE®(Q, @) ={ F AL - p5 (O)e™ ]} F AR - p4(80)]R ¥ (R0, Q)e™™/M'

where

c(Q, @ +R'P(Q,, Q). (8)

)/ e(Q) =R (R, Q)

Using the expansion to lowest order in L/A, we
obtain
exp[- (L%/4n)(a®+6%) ]=1 - (n/n)
X [(sin@, cos @o — sinb cosp)?

+ (sing, sing, — siné sing)?] ,

where
r-n=(rL/2)? (9)

is a natural parameter for the strength of the cor-
relation.

If Egs. .(7) and (8) are evaluated explicitly, there
is considerable simplification due to the vanishing
of several of the integrals over azimuthal angles:

&) = (1 - p, (w)e K] fol du' (1 =u®)[1 = ps ()]

X{(l "e-K/ul)/[l = Ps (u -K/u }S(u, u )77 )

(102)
£, w)= S D% %+ u))/ f, du”
X$i[ (0% 2’ +u") ], (10b)
Snb=e™’ Z n)fn"‘ ; (10c)
without correlation,
3"0(Q) = = [1 = p )/ [1 = py(w)e ™ "]. (11)

Substitution into the expression for conductivity o
relative to bulk oy

o/0p=1- (3K )fal dulu - u®)®*w)e " -1]  (12)

gives the result

( )
_E=<_0) 0)+<_‘_’_)(“ =1 -(%K)'/‘l du(u —u®)
Op Oo Jo 0

~K/u 1
[—(-l—f—)e—.—)mﬁ u'[L ~ ps(u)]

0

(1 —u)(1 - e-K/u)eB(u,u'))

X<6 (u —u’) - [1 ps (u ) ~Klu’ ]

(13)

From this expression two things are immediately
apparent. To this order, at least (and presumably
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Q) ={ Q)1 - ps(8)e* ]} £ AR = ps(80) IR (S,

1o

) -K/|u0| , (70)

(7d)

-
to any order), one gets the expected increase of
conductivity due to the correlation term. Also,
although in the absence of correlation the Fuchs
conductivity appears, with p depending on angle
as py(u), this is no longer true under the influence
of correlation. That is, the factor [1 —p,(u)] is
replaced by a more complicated expression, but
the factor [1 —p (u)e */*]" isnot. Physically, the
“diffuse” scattering is contributing, as described
above; this is quite different from a simple low-
ering of the amplitude of the specular beam.

To get some idea of the effect of correlation,
approximate numerical evaluations of the zero-
order and first-order terms in Eq. (13) were
carried out. The quantity (0/0g)‘*’/n was evalu-
ated by using the Gaussian integration procedure
and a three-point interpolation scheme for S,,(x),
which is plotted in Fig. 1. [Four (and occasionally
as a check, six) points were used. The third fig-
ure may not always be fully significant, although
in most cases it is. ] (6/09)*/n and 1 - (¢/0)?
are plotted in Fig. 2. These quantities represent
the increase and decrease of the relative conduc-
tivity due to finite and zero correlation, respec-
tively. The resultant resistivity size effect

T T T T
0.500} 4
0.400 .
0.300F . FIG. 1. Plots of
the universal func-
tions S,(x) for m=1
Sm (x) and 2.
0.200+ -
0.100F .
OO %
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@ W o2
K=0.3
o.lof- K=0.5 040 n
K=0.5
0.8 k=101 032} 7 FIG. 2. (a) Contribu-
tion of correlation to the
(o/0% )(L) L ] a (o) | 4
2z o I1-(o/05) Kelo conductivity size effect
06 _ 024k . is plotted against rough-
ness %/A for various ¢/1;
L 4 b (b) for comparison, the
oal | ousk i decrease of relative con-
’ ’ ductivity in the absence
+ 4 g of correlation is shown,
0.2f E 008} N
%% ' o - oz : 0.3 % : o : o2 : 0.3

h/Xx

(p =po)/pg is plotted in Fig. 3 for the thinnest case
considered, K=0.3. (This is done only up to
n=0.1=L/x, since for higher values the next-or-
der term is likely to be significant. )

From Fig. 2, it is seen that the correlation ef-
fect (0/0p)' "’ for fixed n rises with increasing
roughness and starts to level off. This leveling,
off is more noticeable than in the zero correlation
effect. An explanation offered for this behavior
of the correlation effect is that there are two op-
posing effects contributing to its roughness depen-
dence. One is that, as roughness is increased,
the amount of flux inthe “diffuse” channel increases,
roughly as some average of 1 —p. This was in-
cluded in the original model by imposing flux con-
servation.* Eventually, this saturates at about
unity, since most of the electrons which reach the
surface without internal scattering (which produces
the size effects) are at angles nearer the normal,
in which p becomes rapidly smaller, as /) is
raised. Since the “diffuse” channel contributes
to an increase in conductivity, this causes an in-
crease in this effect. As saturation occurs,
another effect takes over. This is the effect of
increasing asperity slope as #/L is increased.
The quantity should be more significant than L/x
itself. As h/L is raised, the “diffuse” flux should
become more nearly isotropic. (It is shown in
Ref. 4 that in this limit the flux density does not
become truly isotropic, but rather becomes sym-
metric about the normal, as well as smaller,
which still leads to no contribution to the current
in the Fuchs case.) This means its contribution
to raising the conductivity is diminished. Thus,
it would appear that the roughness dependence of
the correlation contribution to the conductivity can

h/x

be explained as an increasing contribution of the
“n/L” or slope effect as the “1 —p” or flux-con-
servation effect saturates.

Figure 3 shows the over-all magnitude of the
combined effects on the resistivity for K=0. 3.
In the roughest case considered, h=~ i\, the effect
of correlation is no more than about 3% of the size
effect in the strongest correlation case considered,
L~fgx. Of course, in a more general calculation,
these effects could be much larger. In particular,
as L/x -, the correlation effect exactly cancels
the zero correlation contribution, giving bulk re-
sistivity. *

|0 T T T T T T T T T T
K=03
S nw/a =0.252 7
8F -
7+ g
of 4
h/x =0.138
S i e e e e — i
P-4
R 1
3 h/x=00796 7
2k .
[L_h/x=00436
h/x=0.0252
0 1 1 1 1 1 1 1 1 1

1
0O O 02 03 04 05 06 07 08 09 .0 Wt
L/x

FIG. 3. Over-all effect of correlation and roughness
on the resistivity size effect is shown for a range of
correlation in which the model is assumed to be valid.
Horizontal dashed lines denote the size effect in the
absence of correlation.
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Many-Electron Theory of Nondirect Transitions in the Optical and Photoemission
Spectra of Metals™

S. Doniach
Department of Applied Physics, Stanfovd University, Stanforvd, California 94305
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The theory of the singular readjustment of a conduction band to a hole formed in an x-ray
absorption event is extended to the case where the hole has finite mass, as in the d band of
Cu. Although the resulting recoil removes the singularity, the effect may still be quite large,
and results in an electron-induced Debye-Waller-factor reduction of the intensity of direct (k-

conserving) optical or photoemission events.

This reduction depends on the mass of the d-

band hole, and is accompanied by inelastic contributions in which the photon energy is shared
between an interband transition and a number of low-energy electron-hole pairs.

I. INTRODUCTION: HOLE PROPAGATOR

When an x ray is absorbed by a core electron in
a metal, the consequent readjustment of the Fermi-
gas conduction electrons to the hole potential has
the singular character of an infrared divergence.
This singularity was discovered by Mahan® and
further investigated by Noziéres and co-workers. %3

In the present paper we suggest that a similar
effect, though not singular as in the x-ray case,
will occur when electrons in a narrow band (such
as a d band) lying below the Fermi level are excited
by some sort of radiation.

Inthe core-state case, Doniach and Sunjic* showed
that the infrared singularity (suitably smeared by
lifetime effects) would show up directly in the form
of the low-energy tail in the line shape of emitted
photoelectrons from the metal. In the present nar-
row-band case, too, we show that the relaxation of
the Fermi sea of electrons around the narrow-band
hole will lead to enhancement of weakly inelastic
(1-2eV)events during a uv photoemission process.
The magnitude of this effect depends on the strength
of the effective screened potential for conduction-
electron-hole scattering, which is not known at the
present time, but the effect possesses certain
characteristic qualitative features which should
allow it to be distinguished from other inelastic
photoproduction mechanisms in the metal.

In the core-state case the infrared divergence
is found theoretically from a study of the hole cor-
relation function, or propagator (whose Fourier
transform is directly related to the spectrum of

photoelectrons in a photoemission experiment):
() =«b()p*(0)), (1)

where b* is a creation operator for the core-state
hole. The divergence shows up as a power-law be-
havior g(¢)~ ¢ *for long times, which may be thought
of as resulting from the fact that the production of
zero-energy electron-hole pairs at the Fermi sur-
face becomes infinitely probable; i.e., the lower
the energy of the pairs, the more that will be pro-
duced. In the case of hole states in a narrow band,
the hole creation operators are now labeled by a
momentum suffix b}, . The change in the physics is
that the hole undergoes recoil during the emission
and reabsorption of low-energy pairs, and the re-
sulting recoil energy removes the zero-energy de-
nominators, which lead to the divergence in the in-
finite-mass case. However, we suggest that the
many low-energy pair scatterings will still be en-
hanced in the case of large hole mass (narrow hole
band) relative to the perturbation-theory result
(for a single electron-hole pair), leading to a pro-
pagator with spectral density of the form [ Fourier
transform of (1)]

ImgK(w):AKé(w'—EK)+¢K(w) ’ (2)

where hole-lifetime effects due to recombination
and scattering have been neglected.

The above result is based on a “pseudoharmonic”
treatment of the perturbation of the electron-gas
density by the hole potential. The reduction of the
6 function part by the factor Ay is a kind of electron-



